NYU

Lecture 08:

Efficient DNN Training, Parameter Efficient
Finetuning, Speculative Decoding



Notes

Lab 2 is due this Friday, Lab 1 grade will post this weekend.
Grade of Lab 1 will be posted this weekend.
Think about the project, discuss with me during office hours or after class.
Midterm
o Oct 29, in class.
o  Will cover materials up to this lecture (Oct 22)
e Final presentation
o Virtual
o Dec 16 and Dec 17
o Final report due at Dec 19
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https://nyu.zoom.us/j/98317554792

Notes

e Lab 3 will be posted this weekend.
o Speculative decoding
o Yunhai will hold extra office hours weekly about Lab 3 on Wednesday 2-3pm
m https://nyu.zoom.us/j/98317554792
e | will traveling this Friday, so office hour will hold online. Additional office hours can
be arranged upon request.
e Quiz today on Efficient LLM.
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Recap

Large Model Data Distribution
Large Model Quantization

Large Model Pruning

Low-rank Decomposition for LLM
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Topics

e Efficient training of DNNs
o Efficient computing
o Efficient storage

e Parameter efficient finetuning
e Speculative Decoding
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Forward Pass for Linear Layer

Cin Cout Cout Cout
Cout Loss
function
Bl X |xCnl W =Bl Y Bl Y |——| VY
Layer 1 Layer L
B: batch size Cin: input channels  Cout: output channels
X: input maps W: weight filters Y: output maps

e The fully-connected layer during the forward propagation can be converted into
matrix multiplications.
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Backward Pass for Linear Layer

Weight Gradient Computation Data Gradient Computation
Cout Cout Cin
B Cout Cin
Cin- X B|VY [= Cn vW BIVY X Cou| WT |= B
X: input maps W: weight filters Y: output maps

VX: input gradient ~ VW: weight gradient VY. output gradient

e DNN backward propagation involves two matrix multiplications
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Backward Pass for Linear Layer

Data Gradient Computations

NYU SAI LAB

Cout
vY dRelLU/dx
X: input maps

VX: input gradient

vY

Weight Gradient Updates

Cin

W: weight filters

VW: weight gradient

Cout

W

-nx

VW

W!

Y: output maps

VY: output gradient

DNN backward propagation involves two matrix multiplications



Training Process

Loss Loss

Forward
pass
Backward
pass

def forward(self, x): loss.backward()

return
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Forward Pass for Convolutional Layer

Convolution View Matrix View
C.
- C N
Forward P i i ﬁ i i
orwar ass -
W : = g W: Baw| X | XC| W |=ppw

Compute outputY B i i

e Assume a weight kernel size of 1x1.
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Backward Pass for Convolutional Layer

Backward Pass
Compute Activation
gradients VX
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Backward Pass for Convolutional Layer

Backward Pass

Compute
weight
gradients VW

NYU SAI LAB

C

B
' H
. X

o

B N
e
Wi =g
T =

BHW

vY

VW




Efficient Computing during Training

e To reduce the training cost of DNN, we can proceed from the
following dimensions:
o Training data sampling
o Parameter sampling
o Pruning during training
o Quantization during training
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Training Data Sampling for Efficiency

|

g . ) = : :
i | Initial Train Select Train Select Train
| | Subset Target Subset = Target Subset Target
L] (s9) (45) (sus)| ®m = = (Ak-1) (..us¥) (4%)

|

e Assume a total b samples are targeted to be picked. We consider a batch setting with K rounds
where we select b/K points in every round.

e Training the target model with b/K samples, then evaluate the rest of the sample over the model.

Find the batch with the least confidence score. Append it to the training dataset.

U L Cody Coleman, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec, and Matei
NY ‘SAI AB Zaharia. Select via proxy: Efficient data selection for training deep networks, 2019.
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Training Data Sampling for Efficiency

099 011 027 097 034 036 e Assume a total b samples are targeted to be
y1 yz y3 y4 yz y'3 picked. We consider a batch setting with K

y1 and y4 rounds where we select b/K points in every
are removed round.
DNN I > | DNN
[ ]

Training the target model with b/K samples, then

X1 X2 X3 X4 X2 X3 evaluate the rest of the sample over the model.
Find the batch with the least confidence score.
Round 1 Round 2 Append it to the training dataset.

U L Cody Coleman, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec, and Matei
NY ‘SAI AB Zaharia. Select via proxy: Efficient data selection for training deep networks, 2019.




Efficient Computing during Training

e To reduce the training cost of DNN, we can proceed from the
following dimensions:
o Training data sampling
o Parameter sampling
o Pruning during training
o Quantization during training
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E2-Train

T - @ A stochastic mini-batch
Loss_'l dropping strategy is
: o N proposed.
| R — e . o' & Stochastic minibatch
: ‘| Model-Level: SLU e T e e e e : : :
: ; gl glsb ' dropping simply skips
L — o —g:z G _’lil"ﬁ every mini-batch with a
Batch N ; S ity O default probability of 0.5.
F“—'— - : e For some easy dataset,
jﬁ o ———3(c™] e this will generate
— T T negligible impact on
Data- [: SMD Algorithm-Level: PSG
ata-Leve performance.
NYU (S AI L AB Wang, Yue, et al. "E2-train: Training state-of-the-art cnns with over 80% energy savings." Advances in Neural 17
Information Processing Systems 32 (2019).




Dynamically Layer SKipping

e G;(z;) € {0,1} is the gating function
for layer i.
e (-, >~ - ,@ ...... : e [t determines whether to skip to current
residual block or not.
Y V v e During the training, G and residual
F\Residual&o_xé\_ Residual \ x"’; ResidualSo-)_ blocks are trained together‘
Block Block Block e Loss =acc_loss + computation_loss
e \We will skip different layers adaptively
based on inputs.

Wang, Xin, et al. "Skipnet: Learning dynamic routing in convolutional networks." Proceedings of the European
conference on computer vision (ECCV). 2018.

NYU SAI LAB Wang, Yue, et al. "E2-train: Training state-of-the-art cnns with over 80% energy savings." Advances in Neural
Information Processing Systems 32 (2019).
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Efficient Computing during Training

e To reduce the training cost of DNN, we can proceed from the
following dimensions:
o Training data sampling
o Parameter sampling
o Pruning during training
o Quantization during training
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Pruning during Training
U

Prune pgrt of dL o wr = dL
the weight dO dl
ﬂ  SDGP for 2:4 Sparsity

Train the | %% after .

current model % i pruning |
x x E D nonzero
_____ dense  zasparse jLJzero
Resultant
model

e \We can remove the unnecessary weight during the DNN training process.

U L McDanel, Bradley, Helia Dinh, and John Magallanes. "Accelerating dnn training with structured data gradient pruning."
N Y ‘SAI AB 2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022. 20




How to Find the Winning Tickets?

e Iterative Magnitude Pruning (IMP):
e Initialized DNN with random weights wo.
e \While the sparsity level has not reached:

@)
O
O

Train the DNN with k epochs until convergence

prune p% of the nonzero weights.

Reinitialize the remaining weights using the values in wo, finetune the remaining weights for k
epochs (Rewind).

e Return the weights.
e Later work has shown that rewind to wi (i is small) works better for larger networks.

NYU SAI LAB

Frankle, Jonathan, et al. "Stabilizing the lottery ticket hypothesis." arXiv preprint arXiv:1903.01611 (2019).
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Weight Rewinding

Conventional iterative pruning

Prune p%
Tralnmg welghts Retrammg

Initial DNN with Wo Result weights
Conventional iterative pruning with weight rewinding

Prune p%
Training %% weights % Rewinding % Retraining

Initial DNN with Wo Rewind to Wo or Wi Resultant weights
(i is small)
e The pruned architecture itself, rather than a set of inherited “important” weights, is more crucial to
the accuracy in the final model, which suggests that in some cases pruning can be useful as an
architecture search paradigm.

NYU SAI LAB Liu, Zhuang, et al. "Rethinking the value of network pruning." arXiv preprint arXiv:1810.05270 (2018). 2




Early-bird Ticket

Progressive Pruning and Training
Tranned Model

LTH shows that there exist winning tickets (small but
critical subnetworks) for dense, randomly initialized

networks, that can be trained alone to achieve a
m - - comparable accuracy to the latter in a similar number
of iterations.

100% training
(train N epochs, e.g., N = 160)
EB Train (Proposed)

s Vg
<] [ NG

N

6% - 20% training

You, Haoran, et al. "Drawing early-bird tickets:
NYU SAI LAB ar)l;iv:1909.11957 (2019\;\{I e

e The winning tickets can be drawn very early in
training and with aggressively low-cost training
algorithms.

e Early-bird tickets can be founded via low-cost training

schemes (e.g., early stopping and low-precision
training) at large learning rates

Towards more efficient training of deep networks." arXiv preprint
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Early-bird Ticket

Algorithm 1: The Algorithm for Searching EB Tickets

l:
2:
3

4
5
6:
7L
8
9
0
1;

Initialize the weights W, scaling factor r, pruning ratio p, and the FIFO queue () with length [;
while ¢ (epoch) < t,,,,, do
Update W and r using SGD training;
Perform structured pruning based on r; towards the target ratio p;
Calculate the mask distance between the current and last subnetworks and add to ().
t=t+1
if l\gax(Q) <ethen — The mask

t* = ¢ pattern is stable
Return f(z;ms © W) (EB ticket);
end if
end while

e To search for the lottery ticket, we can early stop the DNN training.

NYU SAI LAB

You, Haoran, et al. "Drawing early-bird tickets: Towards more efficient training of deep networks." arXiv preprint
arXiv:1909.11957 (2019).
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Efficient Computing during Training

e To reduce the training cost of DNN, we can proceed from the
following dimensions:
o Training data sampling
o Parameter sampling
o Pruning during training
o Quantization during training
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DoReFaNet

Compute g,, =

ac

knowing ay, and a*.

it Bk —Ttolde e Linear quantize the

11:  Back-propagate g,, through activation function i Weig hts and activations
. b G .

20 Go = 15 (9a1) e Apply stochastic

13:  ga,_, < backward-input(g’ ,W})
14: gy < backward-weight(gg,,a;_;)
15:  Back-propagate gradients through pooling layer if there is one

16: end for

quantization for the
gradients.

{2. Accumulating the parameters gradients: }
17: for k = 1to L do

ow?r

18:  gwi. = 9w aw,
19: W} « Update(Wi, gw, ,n)

20: end for

NYU SAI LAB

Zhou, Shuchang, et al. "Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients." arXiv
preprint arXiv:1606.06160 (2016).
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DoReFaNet

e Usually gradients requires far
more bitwidth than weight and
activation.

e Usually gradient requires
stochastic quantization.

NYU SAI LAB

W A G Training Inference Storage AlexNet Accuracy
Complexity Complexity Relative
Size
1 1 7 1 1 0.395
1 1 9 1 1 0.395
1 1 32 - 1 1 0.279 (BNN)
1 1 32 - 1 1 0.442 (XNOR-Net)
1 1 3% = 1 1 0.401
1 1 32 = 1 1 0.436 (initialized)
1 2 6: 8 2 1 0.461
1 2 %8 10 2 1 0.463
1 2 32 - 2 1 0.477
1 2 32 - 2 1 0.498 (initialized)
1 3 6 9 3 1 0.471
1 3 32 - 3 1 0.484
1 4 6 4 1 0.482
1 4 32 - 4 1 0.503
1 4 32 = 4 1 0.530 (initialized)
8 8 8 8 0.530 27
32 3% 32 32 0.559




Deterministic and Stochastic Quantization

e To quantize a, conventional linear quantization will make
g(a) = 0. However, this will cause a bias.

5 $ 1' e With stochastic quantization:
a=0.2 _J1 forp=0.2
q(a) = {O forp = 0.8

e Stochastic quantization is extremely useful when applying quantization to accelerate DNN
training.

NYU SAI LAB
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[ 8-bit mantissa 10-bit exponent )
DR [ [T TTIITT]) =
DEEEEEEN [ [T TTTTT1) -

[ n-element tensor

—

— ——
T —
—_—
—_—
—l
S—
—
—_ ——
e T —
SIS By S
[

5
Sl

(a) FP repr. with an exponent per tensor element.

N

( n-element tensor

[
=
LIy

8-bit mantissa

-
T o

Training DNNs with Hybrid BFP

10-bit exponent

L

(b) BFP repr. with an exponent per tensor.

e Block floating point format achieves a better hardware efficiency and
comparable representation capability than FP.

Drumond, Mario, et al. "Training dnns with hybrid block floating point." Advances in Neural Information Processing

NYU SAI LAB| systems 31 (2018).
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Training DNNs with Hybrid BFP

e Use BFP in all dot-product-based operations present in DNNs (i.e., convolutions, matrix
multiplications, and outer products), and floating-point representations for all other operations
(i.e., activations, regularizations, etc).

e To minimize data loss in long-lasting training state, the weights are stored with wider mantissas.

5.0
hbfp8_16
P 407 -~ hbfp12_16
2=poe & W W 2
3.0 fp32
g
€201
&
1.0
0.0 . ;
0 30 60

Epoch

Validation error

'S o ®
g o g
o o o

%)
o
=

hbfp8_16
-= hbfpl12_16

30 60 90
Epoch

ResNet-50 trained on ImageNet
for 90 epochs.

8 bit mantissa, 16 bits weight
seems to achieve comparable
performance as FP32. A mantissa
bitwidth of 12 achieves an even
better performance.

A tile size of 24.

Drumond, Mario, et al. "Training dnns with hybrid block floating point." Advances in Neural Information Processing

Systems 31 (2018).
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Two Copies of Weights

Input data gradient
Computation

Cout

vY

Cin

Cin

X Cout

WT

Cin

Weight Gradient Updates

Cout

w

-r]X

NYU SAI LAB

VW

=W

Weight Gradient Computation

Cout
B Cout

c- x BIWY |= Cn|yW

e Gradient and forward propagation are
performed using BFP.

e \Weights are updated using FP.

e Two copies of weights are used.
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Two Copies of Weights

L
Quantized Forward Backward
Activation pass pass
Weight
BFP gradient
Quantized Weight
Weight | Update |
© FP32 FP32
a S
L a
Memory £.£ Memory

e Two pieces of copies are needed to be kept in the memory.
e The weight updates are usually performed with higher precision (e.g., FP16).
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Neural Gradients are Near-Lognormal: Improved
Quantized and Sparse Training

Lognormal Normal

=

—
(2]
—

(@) (b)
2

&

Data quantiles
S

Data quantiles
8 &

o

o

0 0001 0002 0003 2730 2725 2720 2-15 2-10 -5 0 50 100 0 2 4
Neural gradients Log (neural gradients) Theoretical quantiles Theoretical quantiles

e The distribution of neural gradients is approximately lognormal.
e We can use lognormal regression to determine the optimal quantization
setting (e.qg., bitwidth, quantization interval).

Chmiel, Brian, et al. "Neural gradients are near-lognormal: improved quantized and sparse training." arXiv preprint

NYU SAI LAB arXiv:2006.08173 (2020).
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Topics

e Efficient training of DNNs
o Efficient computing
o Efficient storage

e Parameter efficient finetuning
e Speculative Decoding
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Memory Consumption During Training

Forward pass Backward pass Normalized Number of Parameters
Storage during DNN Training

Memory Memory AETED) =
K : \Output L2 ouput e J ouput ResNet-18 [ 1x =Activation
T l ResNet-34 mmWeight
| ResNet-50
[ [ LaylerO ] [ LaylerO ] VGG-16 13.4x

| Input |

Batch size = 48

e The memory footprint grows proportional with the layer depth. The activation in the early DNN
layers need to be stored for a long time.

e Activations consume most of the memory space, approximately 13 times larger than the
weights on average.

NYU SAI LAB .




BIM: Block-Wise Local Learning with Masked
Image Modeling

Decoder

0] Decod [0] . . . .
5 B (G ],y o |8 Leed e Local exist is introduced during the
2] (2] . .
> H 5 Encod:
> £ ‘ 3 @ Py 4 Br;ggkir Decoder tralnl.ng process .
S 9 mm—| || SR - e The intermediate results can be discarded
o 2B © Encod ..
@ (E=8 )y =9g Ll__]_Y)[% once the training process for the current
c 0 Encod olls c O Block 2 .
o 5 ﬁ |.|. g o 5 Encoder — Iayer IS Complete
8‘) - 8‘: " E Block 2 Decoder
o= - ol ) =
oc Encod
) 7 o) Q Block 1
= o)
0 {J Patchify 0 % Patchify
memory =§§E‘i memory 1?!!-
i b
(a) Conventional MIM (b) BIM

Luo, Yixuan, Mengye Ren, and Sai Qian Zhang. "BIM: Block-Wise Self-Supervised Learning with Masked Image

NYU SAI LAB Modeling." arXiv preprint arXiv:2311.17218 (2023). 36




BIM: Block-Wise Local Learning with Masked
Image Modeling

Forward pass

Xi+1@ DBe|°:ei'

Block i

Encoder
Block i+1

Forward pass v

Xi® [ Block i l X ®
Encoder Encoder N
Block i Block i * Backward pass

Step 1 Step 2 Step 3 Step 4

Encoder *
Backward pass
Block i+1 :

Block i

e Once the parameter updates in encoder block i and decoder block i are finished,
all intermediate features stored in the buffer, except for xi , can be cleared from
memory, preserving them for future use.

NYU SAI LAB Luo, Yixuan, Mengye Ren, and Sai Qian Zhang. "BIM: Block-Wise Self-Supervised Learning with Masked Image

Modeling." arXiv preprint arXiv:2311.17218 (2023).
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Topics

e Efficient training of DNNs
o Efficient computing
o Efficient storage

e Parameter efficient finetuning
e Speculative Decoding

NYU SAI LAB
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Parameter-efficient Finetuning (PEFT)

e Large models (LMs), often consisting of billions of parameters, require vast
amounts of computational resources for execution.

e The expansive scale and computational demands pose considerable
challenges when customizing them for particular downstream tasks.

e To better adapt the LMs over the downstream tasks, we can finetune a small
portion of the LM parameters. This will make LMs achieve great performance
over the downstream tasks while minimizing the training cost.

e Some of the popular PEFT Algorithms:

o LoRA
o Adapter
o BitFit

NYU SAI LAB N




Parameter-Efficient Transfer Learning for NLP

:/ poapir e \We add the adapter module twice to each
1 ooiig . [000000] | ! Transformer layer.

; | . e i e The adapter consists of a bottleneck

i g | P oot ; which cor?tains few parameters relatiye to
5 | — the attention and feedforward layers in

5 ; 5 5 the original model. The adapter also

E : | E | contains a skip-connection.

i Ry 5 e The learnable parameters contributes to

; ; M around 0.5 — 8% of the parameters of the
Ml headed , [©ooooo]| original model.

___________________

NYU ‘8 AI L AB Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International conference on machine learning.
PMLR, 2019.




BitFit

Qm,é(x) _ W;n-.éx o b(r{u(
Km,é(x) _ WZnEX i bzy_(f
Vm,f(x) - W:?fo il b:n(

h} = Dropout(W, -h{ + bl )

mi mi

¢
¢ ¢ (hs +x) — '
hi =giy, © —2 . +bin,

hf = GELU(Wf”Q-hg + bl.)

h§ = Dropout(W%, -hi + bl )

(hf +hj) —
ag

out’ = ggm"z © + b[LNg

NYU SAI LAB

BitFiT is a sparse-finetuning method
where only the bias-terms of the
model are being modified.

Applying BitFit on pre-trained BERT
models is competitive with (and
sometimes better than) fine-tuning
the entire model.

Bias parameters make up 0.09% of
the total number of parameters in
BER.

Zaken, Elad Ben, Shauli Ravfogel, and Yoav Goldberg. "Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models." arXiv preprint arXiv:2106.10199 (2021).
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Finetune Bias is Cheap

Cin Cout

Cout dL dL
8 X |xcl wl=8l Y |+p — =) —
X df = dy

Il
o

e Updating the bias does not require buffering any intermediate results
during the forward pass of DNN training.

Cai, Han, et al. "Tinytl: Reduce activations, not trainable parameters for efficient on-device learning." arXiv preprint

NYU SAI LAB|  arxiv:2007.11622 (2020). 42




Low-rank Adaptation (LoRA)
A

r

LoRA

\.

( MLP )
. S
\\ 4 SA N\
>=B< \\ [ | | | | | | ]
A
1] QK ||V
1A A A

N\

J/

1apo29(

LoRA (Low-Rank Adaptation) is a
PEFT method for large pre-trained
models. Instead of updating all model
weights during fine-tuning, LORA
inserts small trainable low-rank
matrices into specific layers (usually
the attention projections).

This dramatically reduces memory
and compute requirements while
maintaining near full fine-tuning
performance.

NYU SAI LAB Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).
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Low-rank Adaptation (LoRA)
A

r

LoRA

NYU SAI LAB

N

([ MLP ) h=Wox+ AWz = Wox + BAzx
e Only the weights within the red blocks
-) are updated.
L ] 18 e Assume the weight matrix has a
[a o dimension of ExE, A and B have a size
\ _ Q.
[ SA|(® of Exr and rxE, where r << k (e.g., r=4).
B Y ) e BA can be merged with the original
A ' ' ' weight Wo, leading to no additional
L | QI K|V computational and storage cost.
-\-q é A—) J
Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021). 44



Low-rank Adaptation (LoRA)
A

r

LoRA

NYU SAI LAB

N\

( MLP h=Wyx + AWx = Wyx + BAx
e Compared with finetuning the entire Wa,
- Wk and Wy, this will lead to great
. ) § compute sgvings:
\ e S o 3BLE
([ SA |[® o 6BLrE
B Y ) BxLxE  ExBxL rxBxl
A : : . E | | BxLxr |
L | Qll K|V w | ElwT| BxL er\ /%\ BxL
e e i) T E E | E
' BxLxE E BxLxE E
Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021). 45



Low-rank Adaptation (LoRA)

Model & Method |# Trainable

Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
RoBpase (FT)* 125.0M| 87.6 948 90.2 63.6 92.8 919 78.7 91.2 86.4
RoBpase (BitFit)* 0.IM| 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
ROBhpae (Adpt)* 0.3M [87.1+0 94211 88.5111 60.844 93.14; 90210 71.5127 89.7+; 84.4
ROBhpa (Adpt®)* 0O9M (87341 94.7+3 88.44+1 62.6+9 93.0+2 90.6+0 759422 903+, 854
ROBpase (LORA) 0.3M|87.5+3 95.1+2 89.7+7 634412 93.3+3 90.8+1 86.6+7 91.5., 87.2
RoBiarge (FT)* 355.0M| 90.2 96.4 90.9 68.0 947  92.2 86.6 924 88.9
ROBiaree (LORA) 0.8M[90.64+> 96245 90.941> 68.2119 94913 91.64; 874455 92.6+-> 89.0
RoBiage (Adpt’)f 3.0M|90.2+3 96.1+3 90.2+7 68.3+10 94.8+2 91.9+, 83.8+29 92.117; 884
ROB]argc (Adptp)'i' 0.8M 90.5;{;,3 96.6;{;,2 89.7;*;1_2 67.8:;:2,5 94.8i,3 91.7:|:.2 80.1;{;29 91.9j;.4 87.9
ROBiarge (AdptH)]L 6.0M|89.9+5 96.21+3 88.7429 66.5444 94.7+5 92.1+; 834411 91.04,7 87.8
RoBiarge (Adpt™yt 0.8M|90.3+3 96.3+5 87. 7417 66.3420 94.7+2 91.5+1 729429 91.5+5 86.4
RoBiarge (LORA)T 0.8M[90.6+> 96245 90.2419 68.2419 94813 91.64+> 85241, 92.3.5 88.6
DeBxxy (FT)* 1500.0M| 91.8 97.2 92.0 72.0 96.0 92.7 93.9 929 91.1
DeBxxi. (LoRA) 47M (9195 969+, 92.616 724111 960, 929, 949, 93.0., 913

NYU SAI LAB

e LoRA achieves better results than Adapter and BitFit.
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Topics

e Efficient training of DNNs
o Efficient computing
o Efficient storage

e Parameter efficient finetuning
e Speculative Decoding
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Speculative Decoding

1] 2] 4]
1 T 2
? t t
[ Large H Large } [Sma..}[Sma..]... [Smau}
LLM LLM LLM LLM || LLM LLM
| | [ [ [
o) of1] Nz o] [ Jize
Accurate but slow Fast but inaccurate
Ttot = NTp,1 Ttot = NTp,2

e Speculative decoding enables lossless token generation with low latency.

NYU SAI LAB Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."

International Conference on Machine Learning. PMLR, 2023.

48



Speculative Decoding

NYU SAI LAB

Correct| Draft
A 1 LM

{DraftJ[Draft],.. |:> gn ,/,,,:> Draft | ...
LM LM

LM LM

| | Target
o PN PRRR [_JLM JEEA
N Tp,2 Tval

Ttot = NTp,2+ Tval < NTp,1

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

49



Speculative Decoding

Draft I
) 1 LM

Draft || Draft |,,, | Draft TEEE /v x Draft | ...
e @"“ ]' S

i I I Target

o Pl o3 LM ol

e |[f the token is incorrect, the target model provides the correct token to the draft model to help it

generate subsequent tokens more accurately.
e If the amount of tokens that pass the verification is too low, then it is possible that speculative
decoding is slower than autoregressive baseline.

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."

NYU SAI LAB International Conference on Machine Learning. PMLR, 2023.
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LLM Decoding

well good
A A
well ( Linelar & | ood ( Linelar & ]
doing (I ollgie}] | | | |
am ||| Softmax am ||| Softmax
! A ! A
Decoder Decoder
( * N ( *
KV cache Decoder KV cache Decoder
a * N\ a * 3
Embedding Embedding
. T J . T J
“How are you | am doing” “How are you | am doing”

e We can simply select the token with the highest score. But better results are achieved if

the model considers other words as well. So a better strategy is to sample a word from
NYU SAI LAB the entire list using the score as the probability of selecting that word. St




Speculative Decoding

e To increase the diversity of the LLM output, a better strategy is to
sample a word from the entire list using the score as the probability of
selecting that word.

e Let p(x), q(x) denote the probability density function specified by the
target and draft LLM

e To sample x ~ p(x), we instead sample x ~ q(x), keeping it if q(x) < p(x),
and in case q(x) > p(x) we reject the sample with probability 1- p(x)/q(x)
and sample x again from an adjusted distribution p’(x) = norm(max(0,
p(x) — q(x))) instead.

NYU ‘SAI LAB Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding." 52
International Conference on Machine Learning. PMLR, 2023.




Algorithm 1 SpeculativeDecodingStep

° ° Inputs: M,, M,, prefix.
Speculatlve De(:()dlng > Sample v guesses z; - from M, autoregressively.
fori=1to~ydo
gi(z) + My(prefix + [z1,...,Zi-1])
z; ~ gi(z)
end for
> Run M, in parallel.
e Speculative decoding does not save computation, P, e Py {m] &

_ , M, (prefiz),. .., My(prefiz + [z1,...,2,])
but greatly reduce the memory traffic by reducmg > Determine the number of accepted guesses n.

the number of memory reads, further reducing the . ~U(0,1),...,7, ~U(0,1)

overall latency. nemin({i—1]1<i <y,m > 2830 {y})

> Adjust the distribution from M, if needed.
P'(2) < pnta(z)
if n < -y then

P'(z) < norm(maz(0, pni1(x) — gn+1(2)))

end if

> Return one token from M,,, and n tokens from M.
t ~p'(x)

return prefiz + [z1,...,ZTn,t]

NYU SAI LAB -




Self-Speculative Decoding

e Self-Speculative decoding the draft model is
a subnetwork of the verify model. All the
intermediate results from the draft model are
reusable.

e No additional network needs to be trained,
except a simple classification layer.

Draft model

Zhang, Jun, et al. "Draft & verify: Lossless large language model acceleration via self-speculative decoding." arXiv preprint

NYU SAl LAB| axiv:2309.08168 (2023). .

Elhoushi, Mostafa, et al. "Layer skip: Enabling early exit inference and self-speculative decoding." arXiv preprint
arXiv:2404.16710 (2024).



Specinfer
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(b) Timeline Comparison.

Miao, Xupeng, et al. "Specinfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative
Inference and Verification." arXiv preprint arXiv:2305.09781 (2023).
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Specinfer
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“New York
University”

NYU SAI LAB

“private” or
“q" “prestigious”
Mq LN ) Mq
I I
“New York “New York University
University is” isa”

“New York University is a
private research university”
or

“New York University is a
prestigious research university”

Miao, Xupeng, et al. "Specinfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative

Inference and Verification." arXiv preprint arXiv:2305.09781 (2023).
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Parallel Speculative Decoding

e PEARL is a parallel inference framework based on speculative decoding which utilizes pre-verify

i i
Model ! )

Pre-Verify:

Post-Verify:

Parallel Speculative Decoding With Adaptive Draft Length

' i
DR EBER DR EEE

@00 688

Post-Verify: X

@0@ 5 .O

;\lu\na

and post-verify to achieve adaptive draft length.
e The draft model continues to decode during the verification stage.

e [f the verification fails, the windows size will become 1 in the next cycle.

NYU SAI LAB

Liu, Tianyu, Yun Li, Qitan Ly, Kai Liu, Jianchen Zhu, and Winston Hu. "Parallel speculative decoding with adaptive draft

length." arXiv preprint arXiv:2408.11850 (2024).
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DREAM
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golden retrievers”

Language
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(a)

N

Q: What is

the brand
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Text
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Embedding
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model

Target( Language |
Model |

(b)

Hu, Yunhai, et al. "DREAM: Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for
Multimodal Speculative Decoding." arXiv preprint arXiv:2505.19201 (2025).



DREAM

tl'll+1 d|.1+2

Head J
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e During o_perahon, the target i_S%___SE ____________ '} ';/'eh'g ______ G—’EE
model will send their Target decoding Decoder Layers | 9
intermediate results to the draft " [ layers ‘J = . o)
model to better guide the = ' ' @%@ Atn | =
generation of the draft model. [ S &
3 ElE --- B =
. . = i =
e The visual tokens will also be = he ey e L___“j
pruned to remove the redundant g \?1____S_g+y/[__s_q+y/[j1_ ’

tokens to reduce the processing || Token ]E b)

Selectlon

latency of the draft model.

NYU SAI LAB

Text

Image

Hu, Yunhai, et al. "DREAM: Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for
Multimodal Speculative Decoding." arXiv preprint arXiv:2505.19201 (2025).
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MMT SEED ScienceQA  OCRBench ChartQA MathVista

Models Methods S T S T S T S T S T S T | S T
Temperature = 0

SPD [10] 1.10 1.88 0.81 1.17 1.08 187 0.89 125 091 124 106 176 | 097 1.53

Kangaroo [28] 132 2.11 133 212 131 209 117 189 1.18 198 1.15 186 | 1.24 201

Medusa [4] 1.58 288 159 3.01 144 277 122 233 125 241 122 234|138 2.62

LLaVA-v1.6 Hydra [2] 1.78 386 172 388 1.68 379 141 321 135 3.11 142 325|156 3.52
Vicuna-7B EAGLE [25] 2.10 5.04 209 501 198 488 172 413 156 398 178 425 | 187 4.55
EAGLE-2 [24] 231 548 231 561 215 522 192 488 177 422 187 4.67 | 205 5.01

DREAM 252 640 248 620 233 582 205 488 189 444 211 532|223 551

SPD 1.07 178 106 179 109 188 086 1.12 089 125 087 122|100 1.58

Kangaroo 143 177 151 187 122 1455 121 154, 127 161 153 201 1.836 1.92

Medusa 199 267 196 2.96: 193 277 140 292 L51° 2:82 151 262 1.72 2.6

LLaVA-v1.6 Hydra 212 287 208 299 221 312 149 307 165 3.03 166 287|187 299
Vicuna-13B EAGLE 245 356 219 324 263 398 1.65 331 185 327 1.8 3.09| 210 341
EAGLE-2 289 405 3.18 433 3.09 497 220 412 241 415 239 376 | 2.69 4.23

DREAM 368 558 351 534 336 529 269 464 259 420 253 4.18 | 3.06 4.87

Average

SPD 1.08 1.51 1.03 147 1.05 149 105 149 1.04 143 1.04 146 | 1.05 147
Kangaroo 126 154 1.09 139 114 151 116 152 112 147 113 149|115 149
Medusa 1.37 181 137 181 135 187 124 169 122 168 1.16 147|128 1.72
Hydra 1.58 224 147 204 153 206 138 181 134 179 136 178 | 144 1.95

Faxpeal:) 28 EAGLE 238 347 197 253 231 364 169 273 178 284 164 247|196 2095

EAGLE-2 281 395 231 3.07 264 403 212 325 214 3.17 181 273|231 337
DREAM 293 452 261 3.67 298 433 238 355 235 349 236 342|265 3.78

NYU SAI LAB Hu, Yunhai, et al. "DREAM: Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for

Multimodal Speculative Decoding." arXiv preprint arXiv:2505.19201 (2025).



What makes an ideal draft model?

e |deally, the draft model should have:
o High acceptance rate
o Low execution latency
e This is exactly the goal of DNN pruning, quantization, knowledge
distillation, dynamic computing...

NYU SAI LAB
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Speculative Decoding with Finetuning
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NYU SAI LAB

1e

The draft model will be
trained using the dataset
with cross-entropy loss to
achieve a better
acceptance ratio.
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