
Lecture 08:
Efficient DNN Training, Parameter Efficient

Finetuning, Speculative Decoding

2

Notes
● Lab 2 is due this Friday, Lab 1 grade will post this weekend.
● Grade of Lab 1 will be posted this weekend.
● Think about the project, discuss with me during office hours or after class.
● Midterm

○ Oct 29, in class.
○ Will cover materials up to this lecture (Oct 22)

● Final presentation
○ Virtual
○ Dec 16 and Dec 17
○ Final report due at Dec 19

3

Notes
● Lab 3 will be posted this weekend.

○ Speculative decoding
○ Yunhai will hold extra office hours weekly about Lab 3 on Wednesday 2-3pm

■ https://nyu.zoom.us/j/98317554792
● I will traveling this Friday, so office hour will hold online. Additional office hours can

be arranged upon request.
● Quiz today on Efficient LLM.

https://nyu.zoom.us/j/98317554792

4

Recap
● Large Model Data Distribution
● Large Model Quantization
● Large Model Pruning
● Low-rank Decomposition for LLM

5

Topics
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Speculative Decoding

6

Forward Pass for Linear Layer

● The fully-connected layer during the forward propagation can be converted into
matrix multiplications.

X Y=W

X: input maps W: weight filters Y: output maps

B

Cin

Cin

Cout

B

Cout

B: batch size Cin: input channels Cout: output channels

YB

Cout

Y

Cout

Loss
function…

Layer 1 Layer L

7

Backward Pass for Linear Layer

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

XT = Y W

Weight Gradient Computation
Cout

B
B

Cin

Cout

Cin

● DNN backward propagation involves two matrix multiplications

 XWT
 Y =

Data Gradient Computation
Cout

B Cout

Cin

B

Cin

8

Backward Pass for Linear Layer

X: input maps W: weight filters Y: output maps
X: input gradient W: weight gradient Y: output gradient

 W

Weight Gradient Updates

● DNN backward propagation involves two matrix multiplications

 W
Cout

Cin -η✕ W’ =

Data Gradient Computations

dReLU/dx Y

Cout

B Y

9

Training Process

Fo
rw

ar
d

pa
ss

Loss

B
ac

kw
ar

d
pa

ss

Loss Loss

Weight
update

Weight
update

Weight
update

Weight
update

 def forward(self, x):
...

 return

 loss.backward() optimizer.step()

10

Forward Pass for Convolutional Layer

Forward Pass
Compute output Y =

 Convolution View

B

H
W

C
C

H
W

N

BN X

C

C

N

BHW

N

Y=BHW W

Matrix View

● Assume a weight kernel size of 1✖1.

*

11

Backward Pass for Convolutional Layer

Backward Pass
Compute Activation

gradients X
=B

H

W

N
N

C B

H

W

C

 XWT

C
C

NBHW

N

 Y = BHW*

12

Backward Pass for Convolutional Layer

 Backward Pass
Compute

weight
gradients W

=N

H
W

B

C

H

W

B
N

C

BHW

C XT =BHW

N

 Y W
N

C*

13

Efficient Computing during Training
● To reduce the training cost of DNN, we can proceed from the

following dimensions:
○ Training data sampling
○ Parameter sampling
○ Pruning during training
○ Quantization during training

14

Training Data Sampling for Efficiency

● Assume a total b samples are targeted to be picked. We consider a batch setting with K rounds
where we select b/K points in every round.

● Training the target model with b/K samples, then evaluate the rest of the sample over the model.
Find the batch with the least confidence score. Append it to the training dataset.

Cody Coleman, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec, and Matei
Zaharia. Select via proxy: Efficient data selection for training deep networks, 2019.

15

Training Data Sampling for Efficiency

● Assume a total b samples are targeted to be
picked. We consider a batch setting with K
rounds where we select b/K points in every
round.

● Training the target model with b/K samples, then
evaluate the rest of the sample over the model.
Find the batch with the least confidence score.
Append it to the training dataset.

Cody Coleman, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang, Jure Leskovec, and Matei
Zaharia. Select via proxy: Efficient data selection for training deep networks, 2019.

DNN

x1 x2 x3 x4

y1 y2 y3 y4

DNN

x2 x3

y2 y3

Round 1 Round 2

0.99 0.11 0.970.27 0.34 0.36

y1 and y4
are removed

16

Efficient Computing during Training
● To reduce the training cost of DNN, we can proceed from the

following dimensions:
○ Training data sampling
○ Parameter sampling
○ Pruning during training
○ Quantization during training

17

E2-Train

Wang, Yue, et al. "E2-train: Training state-of-the-art cnns with over 80% energy savings." Advances in Neural
Information Processing Systems 32 (2019).

● A stochastic mini-batch
dropping strategy is
proposed.

● Stochastic minibatch
dropping simply skips
every mini-batch with a
default probability of 0.5.

● For some easy dataset,
this will generate
negligible impact on
performance.

18

Dynamically Layer Skipping

Wang, Xin, et al. "Skipnet: Learning dynamic routing in convolutional networks." Proceedings of the European
conference on computer vision (ECCV). 2018.
Wang, Yue, et al. "E2-train: Training state-of-the-art cnns with over 80% energy savings." Advances in Neural
Information Processing Systems 32 (2019).

● is the gating function
for layer i.

● It determines whether to skip to current
residual block or not.

● During the training, G and residual
blocks are trained together.

● Loss = acc_loss + computation_loss
● We will skip different layers adaptively

based on inputs.

19

Efficient Computing during Training
● To reduce the training cost of DNN, we can proceed from the

following dimensions:
○ Training data sampling
○ Parameter sampling
○ Pruning during training
○ Quantization during training

20

Pruning during Training

Prune part of
the weight

Resultant
model

Train the
current model

● We can remove the unnecessary weight during the DNN training process.
McDanel, Bradley, Helia Dinh, and John Magallanes. "Accelerating dnn training with structured data gradient pruning."
2022 26th International Conference on Pattern Recognition (ICPR). IEEE, 2022.

21

How to Find the Winning Tickets?

● Initialized DNN with random weights w0.
● While the sparsity level has not reached:

○ Train the DNN with k epochs until convergence
○ prune p% of the nonzero weights.
○ Reinitialize the remaining weights using the values in w0, finetune the remaining weights for k

epochs (Rewind).
● Return the weights.

● Iterative Magnitude Pruning (IMP):

● Later work has shown that rewind to wi (i is small) works better for larger networks.

Frankle, Jonathan, et al. "Stabilizing the lottery ticket hypothesis." arXiv preprint arXiv:1903.01611 (2019).

22

Weight Rewinding

● The pruned architecture itself, rather than a set of inherited “important” weights, is more crucial to
the accuracy in the final model, which suggests that in some cases pruning can be useful as an
architecture search paradigm.

Liu, Zhuang, et al. "Rethinking the value of network pruning." arXiv preprint arXiv:1810.05270 (2018).

Initial DNN with W0

Training
Prune p%
weights Retraining

Result weights

Initial DNN with W0

Training
Prune p%
weights Rewinding Retraining

Resultant weightsRewind to W0 or Wi
(i is small)

Conventional iterative pruning

Conventional iterative pruning with weight rewinding

23

Early-bird Ticket

You, Haoran, et al. "Drawing early-bird tickets: Towards more efficient training of deep networks." arXiv preprint
arXiv:1909.11957 (2019).

● LTH shows that there exist winning tickets (small but
critical subnetworks) for dense, randomly initialized
networks, that can be trained alone to achieve a
comparable accuracy to the latter in a similar number
of iterations.

● The winning tickets can be drawn very early in
training and with aggressively low-cost training
algorithms.

● Early-bird tickets can be founded via low-cost training
schemes (e.g., early stopping and low-precision
training) at large learning rates

24

Early-bird Ticket

You, Haoran, et al. "Drawing early-bird tickets: Towards more efficient training of deep networks." arXiv preprint
arXiv:1909.11957 (2019).

● To search for the lottery ticket, we can early stop the DNN training.

The mask
pattern is stable

25

Efficient Computing during Training
● To reduce the training cost of DNN, we can proceed from the

following dimensions:
○ Training data sampling
○ Parameter sampling
○ Pruning during training
○ Quantization during training

26

DoReFaNet

Zhou, Shuchang, et al. "Dorefa-net: Training low bitwidth convolutional neural networks with low bitwidth gradients." arXiv
preprint arXiv:1606.06160 (2016).

● Linear quantize the
weights and activations

● Apply stochastic
quantization for the
gradients.

27

DoReFaNet
● Usually gradients requires far

more bitwidth than weight and
activation.

● Usually gradient requires
stochastic quantization.

28

Deterministic and Stochastic Quantization

10

a = 0.2

● To quantize a, conventional linear quantization will make
q(a) = 0. However, this will cause a bias.

● With stochastic quantization:

● Stochastic quantization is extremely useful when applying quantization to accelerate DNN
training.

29

Training DNNs with Hybrid BFP

Drumond, Mario, et al. "Training dnns with hybrid block floating point." Advances in Neural Information Processing
Systems 31 (2018).

● Block floating point format achieves a better hardware efficiency and
comparable representation capability than FP.

30

Training DNNs with Hybrid BFP

Drumond, Mario, et al. "Training dnns with hybrid block floating point." Advances in Neural Information Processing
Systems 31 (2018).

● Use BFP in all dot-product-based operations present in DNNs (i.e., convolutions, matrix
multiplications, and outer products), and floating-point representations for all other operations
(i.e., activations, regularizations, etc).

● To minimize data loss in long-lasting training state, the weights are stored with wider mantissas.

● ResNet-50 trained on ImageNet
for 90 epochs.

● 8 bit mantissa, 16 bits weight
seems to achieve comparable
performance as FP32. A mantissa
bitwidth of 12 achieves an even
better performance.

● A tile size of 24.

31

Two Copies of Weights

 XWT
 Y =

Input data gradient
Computation

Cout

B Cout

Cin

B

Cin

XT = Y W

Weight Gradient Computation
Cout

B
B

Cin Cin

Cout

 W

Weight Gradient Updates

 W -η✕ W’ =

● Gradient and forward propagation are
performed using BFP.

● Weights are updated using FP.
● Two copies of weights are used.

Cin

Cout

32

Two Copies of Weights

MemoryQ FP
32

B
FP

16

Forward
pass

Quantized
Activation

Quantized
Weight

Weight
update

FP32FP32

Backward
pass

BFP

L

● Two pieces of copies are needed to be kept in the memory.
● The weight updates are usually performed with higher precision (e.g., FP16).

Memory

Weight
gradient

33

Neural Gradients are Near-Lognormal: Improved
Quantized and Sparse Training

Chmiel, Brian, et al. "Neural gradients are near-lognormal: improved quantized and sparse training." arXiv preprint
arXiv:2006.08173 (2020).

● The distribution of neural gradients is approximately lognormal.
● We can use lognormal regression to determine the optimal quantization

setting (e.g., bitwidth, quantization interval).

34

Topics
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Speculative Decoding

35

Memory Consumption During Training

1x

Normalized Number of Parameters
Storage during DNN Training

1.67x

6.6x

13.4x

ResNet-18

ResNet-34

ResNet-50

VGG-16

Activation
Weight

Output

Memory

Layer 0

Input

Memory

Layer 1Layer 1

Output

Layer 0

Memory

Layer 1

Layer 0

Memory

Layer 1

Layer 0

Output Output

Forward pass Backward pass

● The memory footprint grows proportional with the layer depth. The activation in the early DNN
layers need to be stored for a long time.

● Activations consume most of the memory space, approximately 13 times larger than the
weights on average.

Batch size = 48

36

BIM: Block-Wise Local Learning with Masked
Image Modeling

● Local exist is introduced during the
training process.

● The intermediate results can be discarded
once the training process for the current
layer is complete.

Luo, Yixuan, Mengye Ren, and Sai Qian Zhang. "BIM: Block-Wise Self-Supervised Learning with Masked Image
Modeling." arXiv preprint arXiv:2311.17218 (2023).

37

BIM: Block-Wise Local Learning with Masked
Image Modeling

● Once the parameter updates in encoder block i and decoder block i are finished,
all intermediate features stored in the buffer, except for xi , can be cleared from
memory, preserving them for future use.

Luo, Yixuan, Mengye Ren, and Sai Qian Zhang. "BIM: Block-Wise Self-Supervised Learning with Masked Image
Modeling." arXiv preprint arXiv:2311.17218 (2023).

38

Topics
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Speculative Decoding

39

Parameter-efficient Finetuning (PEFT)
● Large models (LMs), often consisting of billions of parameters, require vast

amounts of computational resources for execution.
● The expansive scale and computational demands pose considerable

challenges when customizing them for particular downstream tasks.
● To better adapt the LMs over the downstream tasks, we can finetune a small

portion of the LM parameters. This will make LMs achieve great performance
over the downstream tasks while minimizing the training cost.

● Some of the popular PEFT Algorithms:
○ LoRA
○ Adapter
○ BitFit

40

Parameter-Efficient Transfer Learning for NLP

Houlsby, Neil, et al. "Parameter-efficient transfer learning for NLP." International conference on machine learning.
PMLR, 2019.

● We add the adapter module twice to each
Transformer layer.

● The adapter consists of a bottleneck
which contains few parameters relative to
the attention and feedforward layers in
the original model. The adapter also
contains a skip-connection.

● The learnable parameters contributes to
around 0.5 − 8% of the parameters of the
original model.

41

BitFit

Zaken, Elad Ben, Shauli Ravfogel, and Yoav Goldberg. "Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models." arXiv preprint arXiv:2106.10199 (2021).

● BitFiT is a sparse-finetuning method
where only the bias-terms of the
model are being modified.

● Applying BitFit on pre-trained BERT
models is competitive with (and
sometimes better than) fine-tuning
the entire model.

● Bias parameters make up 0.09% of
the total number of parameters in
BER.

42

Finetune Bias is Cheap

Cai, Han, et al. "Tinytl: Reduce activations, not trainable parameters for efficient on-device learning." arXiv preprint
arXiv:2007.11622 (2020).

X Y=WB

Cin

Cin

Cout

B

Cout

+ β

● Updating the bias does not require buffering any intermediate results
during the forward pass of DNN training.

43

Low-rank Adaptation (LoRA)
● LoRA (Low-Rank Adaptation) is a

PEFT method for large pre-trained
models. Instead of updating all model
weights during fine-tuning, LoRA
inserts small trainable low-rank
matrices into specific layers (usually
the attention projections).

● This dramatically reduces memory
and compute requirements while
maintaining near full fine-tuning
performance.

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

Q K VLo
R

A

D
ecoderSA

MLP

A
B

44

Low-rank Adaptation (LoRA)

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

Q K VLo
R

A

D
ecoderSA

MLP

A
B

● Only the weights within the red blocks
are updated.

● Assume the weight matrix has a
dimension of E✕E, A and B have a size
of E✕r and r✕E, where r << k (e.g., r=4).

● BA can be merged with the original
weight W0, leading to no additional
computational and storage cost.

45

Low-rank Adaptation (LoRA)

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685 (2021).

Q K VLo
R

A

D
ecoderSA

MLP

A
B

● Compared with finetuning the entire WQ,
WK and WV, this will lead to great
compute savings:
○ 3BLE2
○ 6BLrE

E

E

B✖L✖E

E

B✖L✖E

E

W WT

E✖B✖L

E

B✖L

E

r

B✖L✖E

B✖L✖r
r✖B✖L

E

B✖L
A

E

r
AT

46

Low-rank Adaptation (LoRA)

● LoRA achieves better results than Adapter and BitFit.

47

Topics
● Efficient training of DNNs

○ Efficient computing
○ Efficient storage

● Parameter efficient finetuning
● Speculative Decoding

48

Speculative Decoding

…
0

1

1

2

0 1

4

0 32

Large
LLM

Large
LLM

Large
LLM

…
0

1

1

2

Small
LLM

Small
LLM

0 1

4

Small
LLM

0 32

Accurate but slow Fast but inaccurate
Ttot = NTp,1 Ttot = NTp,2

● Speculative decoding enables lossless token generation with low latency.

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

49

Speculative Decoding

…
0

1

1

2

Draft
LM

Draft
LM

0 1

4

Draft
LM

0 32

Draft
LM

Target
LM

✓✓✓✓✓

5

Draft
LM

10 32 4

…10 32 4

Correct

Ttot = NTp,2 + Tval < NTp,1

NTp,2 Tval

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

50

Speculative Decoding

● If the token is incorrect, the target model provides the correct token to the draft model to help it
generate subsequent tokens more accurately.

● If the amount of tokens that pass the verification is too low, then it is possible that speculative
decoding is slower than autoregressive baseline.

…
0

1

1

2

Draft
LM

Draft
LM

0 1

4

Draft
LM

0 32

✗

Draft
LM

Target
LM

✓✓

3

Draft
LM

10 2

…10 32 4 2

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

51

LLM Decoding

● We can simply select the token with the highest score. But better results are achieved if
the model considers other words as well. So a better strategy is to sample a word from
the entire list using the score as the probability of selecting that word.

Decoder

Decoder

Linear &
Softmax

Embedding

good

KV cache

I

“How are you I am doing”

am
doing
good

Decoder

Decoder

Linear &
Softmax

Embedding

well

KV cache

I

“How are you I am doing”

am
doing
well

52

Speculative Decoding

Leviathan, Yaniv, Matan Kalman, and Yossi Matias. "Fast inference from transformers via speculative decoding."
International Conference on Machine Learning. PMLR, 2023.

● To increase the diversity of the LLM output, a better strategy is to
sample a word from the entire list using the score as the probability of
selecting that word.

● Let p(x), q(x) denote the probability density function specified by the
target and draft LLM

● To sample x ∼ p(x), we instead sample x ∼ q(x), keeping it if q(x) ≤ p(x),
and in case q(x) > p(x) we reject the sample with probability 1− p(x)/q(x)
and sample x again from an adjusted distribution p’(x) = norm(max(0,
p(x) − q(x))) instead.

53

Speculative Decoding

● Speculative decoding does not save computation,
but greatly reduce the memory traffic by reducing
the number of memory reads, further reducing the
overall latency.

54

Self-Speculative Decoding

Zhang, Jun, et al. "Draft & verify: Lossless large language model acceleration via self-speculative decoding." arXiv preprint
arXiv:2309.08168 (2023).
Elhoushi, Mostafa, et al. "Layer skip: Enabling early exit inference and self-speculative decoding." arXiv preprint
arXiv:2404.16710 (2024).

D
ra

ft
m

od
el

Ve
rif

y
m

od
el

● Self-Speculative decoding the draft model is
a subnetwork of the verify model. All the
intermediate results from the draft model are
reusable.

● No additional network needs to be trained,
except a simple classification layer.

55

SpecInfer

Miao, Xupeng, et al. "SpecInfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative
Inference and Verification." arXiv preprint arXiv:2305.09781 (2023).

56

SpecInfer

Miao, Xupeng, et al. "SpecInfer: Accelerating Generative Large Language Model Serving with Tree-based Speculative
Inference and Verification." arXiv preprint arXiv:2305.09781 (2023).

Mq

“New York
University”

“is”

Mq

“New York
University is ”

“a”

“New York University is a
private research university”

… Mq

“private” or
“prestigious”

“New York University
is a”

Mp

✅

“New York University is a
prestigious research university”

or

57

Parallel Speculative Decoding

Liu, Tianyu, Yun Li, Qitan Lv, Kai Liu, Jianchen Zhu, and Winston Hu. "Parallel speculative decoding with adaptive draft
length." arXiv preprint arXiv:2408.11850 (2024).

● PEARL is a parallel inference framework based on speculative decoding which utilizes pre-verify
and post-verify to achieve adaptive draft length.

● The draft model continues to decode during the verification stage.
● If the verification fails, the windows size will become 1 in the next cycle.

58

DREAM

Im
age

Text

Visual
encoder

Embedding

Language
Model

Draft
model

Token
selection

Q: What is
the brand
of the car?

Target
modelIm

ageTe
xt “Describe

the image”

Visual
Encoder

Embedding
Projection

Language
model

“An image of two
golden retrievers”

(a) (b)
Hu, Yunhai, et al. "DREAM: Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for
Multimodal Speculative Decoding." arXiv preprint arXiv:2505.19201 (2025).

59

DREAM

Hu, Yunhai, et al. "DREAM: Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for
Multimodal Speculative Decoding." arXiv preprint arXiv:2505.19201 (2025).

● During operation, the target
model will send their
intermediate results to the draft
model to better guide the
generation of the draft model.

● The visual tokens will also be
pruned to remove the redundant
tokens to reduce the processing
latency of the draft model.

60

DREAM

Hu, Yunhai, et al. "DREAM: Drafting with Refined Target Features and Entropy-Adaptive Cross-Attention Fusion for
Multimodal Speculative Decoding." arXiv preprint arXiv:2505.19201 (2025).

61

What makes an ideal draft model?
● Ideally, the draft model should have:

○ High acceptance rate
○ Low execution latency

● This is exactly the goal of DNN pruning, quantization, knowledge
distillation, dynamic computing…

62

Speculative Decoding with Finetuning

s1
1

1
2

1
ns s…

L
ns…

t1 2t
Head

Decoder Layers

sL
1

L
2s

… tn+1

t1 tn…

Text

D
ra

ft
M

od
el

t2

Embedding

Tokenizer

Q K V LoRA
D

ec
od

er

SA

MLP

A
B

Decoder

Decoder
Decoder

…

● The draft model will be
trained using the dataset
with cross-entropy loss to
achieve a better
acceptance ratio.

